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SUMMARY

In this report, we presented two major parts of our research in radar detection

performance of over resolved targets.

In thie first part of this report, we investigate the numerical problems in computation of

radar detection performance. We found ihat a significant difficulty in the computation of

radar detection performance is that many involved formulas, such as incompletc Toronto

functions and modified Bessel functions, have very bad numerical behaviors. This fact leads

to errors of the results. We developed numerical methods to overcome this difficulty and thus

obtained much more accurate results.

In the second part of this report we invesligatcd the effects of energy distribution on ihe

radar deectlion performance. In the calculation of radar detection performancc, it is generally

assumed that the energy is uniformly distributed over the resolution cells. However, in practice

the cells may have different energy. In these cases, modifications are necessary in computing

the detection performance. We developed a realistic model of energy distribution, and found

that ilhe probability of detection generally tends to increase when the energy is not uniformly

distributed. The phenomena are interpreted by the shape of the curves corresponding to

uniformly-distributed energy.
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Part I

NUMERICAL MEITHOIS IN COMPUTATION OF RADAR

IDETECTION PERFORMANCE



INTROI)UCTION

The formulas to compute radar detection pcrformance can be found in many liferaturcs,

such as [I1-191. Ref. III uses Ihose formulas to plot a large amount of figures which show the

probability of dcection vs. signal-to-noise ratio for various target models, pulse numbers, and

cell numbers. These figures are very important in design and development of radar systems,

as well as in radar signal processing. The target models studied in Ref. I lI include

I) Single pulse, cow!ant amplitude scalterers,

2) Single pulse, Rayleigh scatlercrs,

3) Single pulse, dominant plus Rayleigh scallcrers,

4) Multi-pulses, constant amplitude scattercrs,

5) Multi-pulses, slow fluctuating targets, Rayleigh scattercrs,

6) Mulli-pulses, fast fluctuating targets, Raylcigh scatercrs,

7) Multi-pulses, slow fluctuating targets, dominant plus Rayleigh scatterers,

8) Multi-pulses, fast fluctuating targets, dominant plus Rayleigh scattercrs.

A serious difficulty existing in radar detection performance calculation is that many

formulas involved have very bad numerical behaviors, and thus lead to significant errors of the

resulls. Typical numerical error sources are truncation of numbers, subtraction of nearly equal

numbers, truncation of series, numerical integration, ovcrflov- underflow, and opcn-range

integration. The overflows and underflows are mainly caused by two involved special

functions-incomplete ibronlo functions and modified Bessel functions.

Most computers can handle overflows and underfhows automatically. The computers

assign a maximum representable value to the variable which generates overflow, and assign

zero to the valuable which generates underflow. In most cases, overflow will lead to significant

error of the results. And in some cases, underfiow will lead to significant errors. We can

identify the underflow cases which will lead to error and the cases which will not. TlZ ensure

the accuracy of the results, we must eliminate all the overflow cases and the underfiow cases
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which will lead to error.

In this report, we will analyze thie causes of the numerical difficultics, and develop the

methods to overcome these difficulties. The methods are used to compute the probability of

detection for various target models, pulse numbers, and cell numbers. Many of tile figures in

this report are plotted to show the probability of detection against the signal-to-noise ratio.

The figures in this report are compared with those from Ill. Many of the figures show

significant difference from those of [I . One of the purposes of the work in this part of ihe

report is to use the numerical methods in Part II of this report, which investigates fhe effects

of energy distribution on the radar detection performance. The methods developed here can

also be applied to the problems othcr than radar detection.

"f11E INVOLVED FORMULA

The formula involved in computation of radar detection performance can be found in

various literatures. The formulas listed below are obtained from Ref. I1 It. I is assumed that the

energy is uniformly distributed over the resolution cells.

The relationship between false alarm probability, Pfr, and threshold, Yb, is given by

S1a _ (I--exp (-yt• ) M for" single pulse cases (1.l a)

and M

Pr;V = I YIb- -,N-l)] for mulli-pulse cases (1.Ib)

where M is the Iotal number of resolution cells; N is the number of pulses. l(u, s) is ihe

incomplete Gamma function expressed by

0(u, s)=f I dt (1.2)s -I
0 s!

The probability of detection, P•1, is givcn by

Sd l - (l-P d)M (1.3)

3



where Pdn, is the probabilily of a single cell to accross thc threshold, and has different

expressions for different target models, as shown below.

I) For single-pulse constant amplitude scatlerers, Pd,1, is given by

P = E--T1  1,0, /(MNo)I (1.4)

where E is hle total signal energy, No is the total noise, and Tn1m,n,,i is the incomplete

"Toronto function which has the following expression:

"r(mnn,r) = 2 r n-"n -1 e r 2 "- e -12 B,(2r) (it
H 0

and B,,(z) is the nih order modified Bessel function expressed by either

00

B() = 1I (z/25 + 2k (1.6a)
"~ k=0 k!(k+n)!

or
n1

B (z) (z/2) f 2 (1_1 2 -ZI d)B () J l- ) e dl
n 1Fr(n+ 1/2) F(1/2) -I

where r(n) is the Gamma function.

2) For single-pulse Rayleigh scatterers, Pdr is given by

P = exp 1 (1.7)
1- +F_7, 2MN0))

3) For single-pulse dominant plus Rayleigh scatterers, Pdi, is given by

P (fin = I - I + --N Y+1I + 4MNo/E ( I + l+ i/(4MN,)

Y I, )ep( -)

I + (4MNo) (I g

4) For mulli-pulse conslant amplitude scallerers, Pm is given by



Pi 'T - 2N-1, N-l1, VNF- (M N,)(.9

where N is the number of thc pulses.

5) For multi-pulse slow-fluctuating-targct Raylcigh scallerers, Pd, is given by

= ~ r-- '- ~ )+i NE /(2MNO))

6) For multi-pulse fasl-Oluctualing--targct Rayleigh scaliecrrs, P~,J is given by

P d rn :-: I (1 ~ (2 ) -N1 (1. 11)

7) For multi-pulse slow-fluctuating-target dominant plus Rayleigh scattercr-S, Pd.. is

given by

Pdi f P(Y) dY (1. I12a)

wherec \N-2

P(Y) = ~(1+ NE/(4MN 0)) K.- cxp -Y
(I + (MN)2 ý(l +NE (4MNd))

(N-2) ( I+ NE/(4MNo)) K .x IX l+ N E/(4M N')

(I + NE /(4MNqp)2

+ /N1 x(4MN0))(J1
(N-2)! (I + NE /4N) I b

and



K -= N(,+N2) (I.12c)

8) For multi-pulse fast-flucluating-largel dominant plus Rayleigh scattcrers, Pdn, is

given by

N= - NN I
(1 +E/(4 MNo))N k=O k!(N-k)! 4MN )

• IV•+(l±E I(4MN)), N +k-1I1.3
N'k-

1TE NUMERICAL I)IFFICUI:FIES

The formulas involved in computation of radar dectction are given in the above section.

Most numerical difficulties arc caused by the incomplete Toronto function, modified Bessel

function and the open-range integral.

The incomplete Toronto function and the Bessel function will generate many overflows

and underflows. For the open-range integral in Eq. (I. 12a), the function P(Y) may decay

slowly with Y. Therefore, in order to obtain accurate results, we must take a large upper limit

of the integral. However, when the variable Y becomes large, underflows and overflows may

occur in computing P(Y). Also large integral range will result in large computational time.

In the incomplete Tbronto function (see Eq. (1.5)), the following problems may appear:

1. The factor r" n, + I may underflow when r is large and m is much greater than n.

2. The factor exp(-r2 ) may underflow when r is large.

3. In the case where m is much larger than n, the factor tm' " may underfnow or overflow

when I is small or large, respectively.

4. The factor cxp(-t2ý may underflow when I is large.

6



In the modified Bessel function, if the series form (Eq. (1.6a)) is used and z is not small,

we must sum up many terms in order to obltain accuralc results. Then, the factors (7/2)n + 2k,

k!, and (k + n)! may overflow. If the integral form (Eq. (1.6b)) is used and n is zero, there are

singular points at t - I and t = I. These singular points will seriously degrade the accuracy of

the results.

In Eq. (1. 12b), when Y is large, the factor yN I may overflow, (he exponential factors

may underflow. Also large value of Y may lead to problems in incomplete Gamma function

(Eq. 1.2)). In the incomplete Gamma function, the faclor c 'may underfnow and the factor V•

may overflow.

The other numerical error sources include truncation of series, truncation of numbers,

and numerical integration. Some series, such as the modified Besscl function, may decay

slowly with the index. Then if tihe series are truncated too early, the results are not accurate;

while if the series are not truncated early, overflows or underflows may occur.

'TilE NUMERICAL MET! IOI)S

It is relatively easy to reduce the error caused by truncation of numbers and numerical

integral. We can reduce the errors caused by truncation of numbers by using double precision

variables which are generally sufficient. And we can reduce the errors caused by numerical

integration by dividing the integration intervals finely. Also if double precision variables are

used, we find that the errors caused by subtraction of numbers are not serious.

To improve the behaviors of the modified Bessel function, we use the integral form when

n is not zero and use the series form when n is zero. This method can reduce large numbers

of overflows and underflows and to avoid the singular problems.

The remaining difficulties are overflows and underflows. To handle these problems, we

classify the overflows into the following palterns:

1. S-t " when t and S are small and n is large. In this case the factor t" overflows.

7



Generally, when a factor overflows, there should be another factor which is small, otlhcrwisc

(he problem can not be solvcd. In this pallern we can solve Ihc problem by using an cquivalcnt

form of 1-n 4-In S/In I

2. Sor" whcn rand n are large, S is small. In his case, Ihc factor r" overflows. We can solve

4i -1" S/111 uthe problem by using an equivalcnt form of r"

.3. S°-1i when some of ti overflows and S is small. In this case, we can solve fhe problem

by using an equivalent form of X(S'ti).

Similarly, we can classify underflows into fhe following patterns:

I. B-cxp(--I) when B and t are large. In this case, the •actor cxp(.-) underflows. Generally

computer will assign zero to the underflowcd variables. This method will not introduce errors

if no factor is large. Therefore, we only need to take care the cases with a large factor, B. In

this pattern, we can solve the problem by using an cquivalent form of cxp(-t + InB). If the

original form is used, the value of the expression is zero, but the equivalent form may give

non-zero values.

2. B°t n when I is small, B and n are large. In this case, the factor t" underflows. We can

solve the problem by using an equivalent form of In + Ii t/In

3. Ber "when r, n, and B are all large. In this case, the factor r" undcrflows, and we can

solve the problem by using an equivalent form of r-n + In H/In r

4. Bt,1 i when some of 1i underflows and the sum is small. We can solve the problem by

using an equivalent form of E(Boti). If ilie sum is not small, the underflowcd term can be

neglected without introducing errors.

By using these method, we can significantly improve (he accuracy of the results. The

methods can eliminate all the overflows. Although some underflows still exist, they will not

introduce errors; e.g., all the factors are small, or a term in a series is ncglectablc compared

with other terms in (he series.

8



TIlE RESUITS

There are 39 independent figures for various target modcls and pu1sc numbcrs in I I .Thc

figures shows the probability of detection vs. the signal to noise ratio for different cell

numbers. By using the numerical methods devclopcd above, we reproduced all of those

figures.

We compared the figures with those in I l, and found that about 36% of our reproduced

figures are significantly different from those in jI J. The othcr-s are essentially the same.

Figures 1. I- I. 14 show the comparison of the figures with significant differences. Figures

1. la-1.14a are the reproduced ones by using the numerical methods in this report. Figures

1. lb-I. 14b are the corresponding figures from Il1. Figures 1.15-1.39 show the figures without

significant differences (with good numerical behaviors).

SUMMARY

The formula involved in calculation of the radar detection performance have bad

numerical behaviors, and thus lead to errors of the results. Our numerical methods developed

can overcome those difficulties, and give much more accurate results.

Incomplete Toronto function, modified Bcsscl function and open-range integration are

main sources of numerical problems.

The target models with good numerical behaviors includes single-pulse Rayleigh

scalterers and single-pulse dominant plus Rayleigh scatterers. The target models with bad

numerical behaviors include singlc-pulse constant amplihtdc scatterers and multi-pulse

constant amplitude scatterers. The target models with some numerical problems, especially

when N and Yb are large, include multi-pulse Rayleigh scallercrs (slow fluctuating or fast

fluctuating targets) and multi--pulse dominant plus Rayleigh scatterers (slow fluctualing or

fast fluctuation targets).

9



9•Probability of Detection
E7 .. . .. -T-- .... . 7 -T

70', 5 *,,-r - ... . . .. . . . .. - - - .. . . . . . -. - I --÷ . . . . . .. .;. . . . .. .

0- . - -4- , -_

-5 0 5 0 15 20 25 30
Energy to Noise OdbI

Figure 1.1 a The reproduced Iigurc for single-pulse constant amplitude scatterers
when Pra = 1.E-2

PtlbaI ity Of oI tactfet vs. St"Iul 1 lo se Ratic

""9- Lwla mi tw imn
FI* ir e 3

901 ull= filt" M S • lO'

_• t /, / / i '

so

30

-6.4 0. ,S.O +10.0 ,15.0 *20.0 a2.O #30.0
Sipel w matte t, te , Vin a

Figurc 1.1 h The figurc from Ref. I I I for singlc-pulsc cons(ant amplitudc scattcrcrs
when Pra = 1.E-2

10(



99.9 bbiltyof -Detection (%

14u
got--=-- 

-70'~

0.01 II- - .--
-_5 0 5 t0 15 20 25 30

Energy to Noise Idbi

Figure 1.2a The repr-oduce(] figure for singic-pulse constant amplitude scatterers
when Pr I E-5

W"Piiblty of "WomatO vs. Sipl" Uo NOW Rattio

".IN I -oi-

"a -t aI'
98 - Is

6 0

7 0
4 0 - -

B 40-

~ 10 - -

2.1. 64 . 1 0. 2 15 +200 - 2 . 3 .

aim to -os -ti.T/.i

Figue 1 .1)Tcfgr rmRf - -o -ilI-)OC COIt'lt-nllildstcr

0.2n -f, L - -



~99 rlvbability of Detection

99.9-I-. . ...t--

. . . .. . . .. .. . - I • . . .. . . . . . . . . .+_ _
70r - - ~-

,1 -- 77- 7- ... . ,u-_i'_ z_-z-i -. _L•.A . -_

-5 0 5 to 15 20 25 30
Energy to Noise Idb)

Figure 1.3a The reprodLuccd figure for single-pulse constant amplitude scatterers
when P(a =1.E8S

"vublf*mty of "Secteem n. SI I to Beim Ratti

"."9 /

"A9. meatiufSoattwwro.- .,. /-/-

I 70 --

". /.0 / /10
20 12/

-S. .____.0 -2 , 2 3 .whnP, =/1/--

21

Sw. to oli /ut /I o

whn0f .E-8

0.12



9  Probabiity of Detection
99.9r- -

.. . . . . .. .......... 7- _ ._

:-5 0 5 10 15 20 25 30
Energy tLý Nt;,jse 1db)

Figure 1 .4a The reproduced0 figure, f~c 4-pulse constant ampl)itudC sctalttrcrs
when Pf, 1. E-2

ProebI11tzy of 06taction s w. Signal to isa110 Ratio

60g

so___

Sb=.-I - 7__•___ y •:•_ _;_ __ __.: ___.._:__ : _.._ .• :_:..••_.____.-._

20
. 20 _____

_ - . . - -. . . tant 7 Scatt.rm.. .

0.01 ____E_ I_-_ I_

' -S.5 0 5. -10 -15. 0 on. a Z.30.

Signal to bile Ratie. [N In A

Figure 1.4a The figure from R 1" I olr 4-pulse constani amplitude scaltcrcrs
when PC, = 1.E-2

13



99•PrbabMlity of D}etection c

g • r "7 I . . .. .. .. 4jT , " 7 ..... .. " .. ...... . ..

7- " - " 7 - -" - -_ "-------
_r /L-Y ....... .........- ...-.- .=-........-4.............. -....----

O• r-:. ".: i•:-.- ._z..._- -.--- -:- : .• :'- _-+.: -

0.1 " ... .. : . . -
00 • .:7 .. . .. .. A 7i7. . .K L....... ..~. ...... 7..... .

"-:5 0 5 10 15 20 25 30
EneB y to Noise db)

Figure 1.5a The reproduced figure for 4-pulse constant amplitude scatterers
when Pra =1 .E-5

" 01111Y1 of ""aim vs. Sipsl %else Ratio

'I _,____
70

40 _ __ _

* 20 --

2 f,,,r, 39
* Ctinseat Anaituee Icatterers

as .. h-- 5 *4 pulses0: p to I aprl 1C,

0-0 r7ms7lt I nltuk 1Cte --

0.0?

0.1 ______ ............. - I pa IC

S.C G. *SA 10.0 .1.0 *?0.C .2.11

S i i to %aist so, T%. 1•0 d5

Figure 1.5b The figure from Rcf. II I for 4-pulse constant amplitude scatterers
when Pr, = I.E-5

14



~~rbability of Detection1%

70 -------- -r:7- - - ---- 4- - - .- - - -
__ *7 - 1---- -50 7 2  J77z Q i

~t7 jj

-/-A

:5 0 5 t0 15 20 25 3
Energy to Noise Idbi

Figure 1.6a The reproduced figure for 4-pulsc constant amplitude scatterers
when Pra .E-8

Probability of Detection vs. Signal to aiota Ratio

99.99-

of -
99. -

* 90-

6 0 - -

-* 40-

* 20 -

- 0 F /10

0. SaURaa Ampi~twu ScattIHO?,
0.2 4 hoa~e

0..30.1

Figure 1.bThe figure from Ref. Ij fo ((r 4--pulsc constant amplitude scattcrcrs
when Pfa, =l.E--8

15



9agePrvbability of Detection I%1

505

0.1-

:-5 0 5 10 15 20 25 30
Energy to Noise tdb)

Figure 1 .7a The reproduced figure for I 6-pulse constait. amplitude scattercrs
when PC,, 1 .E-2

""9eit -of funts. vs. Signl to motto Matto

_ _ _•. _ _.... _ _ ......._ _ ... ___ I

9iL. . . .._•' . ."'. ... 1 _. .. . . . . ...J_ ,_ _ _ .

40-. .

30

* 20

.... 0 I.... . o .. 0... .. . 1... . . .. . .. . 2.... ... N .. . .

Eneruy to Noiste. 1,dbt)

Figure 1.71) The FgurepFromuceFd gr fr 16-pulse constant amplitude scatterers
when Pf= 1 .E-2

6.05

0./
Siva to Sol, kilo ( 0

Figure1.71) he fiure frm RcIII o 1(-plecnta mliuesterswhe Pf = ,I.iE -
, , / ,16



M:ebability of Detection N _

99-S9 F=-
-- - -.- ....... .

50- ------- - -

---- .- - --.- - - .-

• -- --' . ...'." . .. t • . . . . .. . . ... - ....... .. ....- -. - -..... . .. ... ... .. . .-

O.1 .._-•- _ - . .. . .. ...

0-5 0 5 10 5 20 25 30Energy to Noise Idbl

Figure 1.8a The reproduccd figure for 16-pulse constant amplitude scattcrers
when Pfa = 1.E-5

"Pmbllity of Detetion vs. Signal 0 Noise lalto

t.oH.• ,, .

! A /I-/

O~t i• /Cnsals t Amlitaftli Scttolrers
0.I 16 pulse,

0.01 I W

4 .0 0. +S. 0l.0 +116.0 #2.0 +l. 30.0
Sismal to tsise astio. •#11 is do

Figure 1.8b "rhe figure from Rol. I1l for 1I6--pulse conisltnt amplitude sca•tterCl-S

when Pr,, = 1. E-5

17



nano Avbaility of Detection

50--

•r'- ........ i ~~. ........ • ,"t.... :................... ,........ -4

7-- ....-. *. . ...= .- J.

0.015 0 5 1:- 1 5 20 25 30
Energy to Noise O1bi

Figure 1.9a, The reproduced figure for 16.-pulse constant amplitude scattcrs
when Pf,, 1. E-8

"" III" of .fgt M ft. SIPI to ..... no Ma.e

i V" -

40

20'°- 025 3
En- to o-e Ib

100

Figure 1.9a Therepr figure for 16-pulse constant amplitude scatterers

when Pfa =1 .E--8

1 2 8

0. x I/- Y

S ml t I r Wit El o In

"Fgr .bTe iuefo e I Ii I fo 10-pls~e osatamltd satrr

when P/a =/ 1. E-8=<mt~tAp e.Sit



manRibabilty of Detection
. ... -_.. -. 7-

7O .~-"_ .- - -- -4-t .+ --- ---.- '; .- >. .:- --. -.; 2.

o r - - --J - • - -: . . . . . . "-.. . . . . .. *... .

our--.- --

0.01-~.
:5 0 5 10 15 20 25 30

EneBg to Noise bl

Figure 1. 10a The reproduced figure for I (-pulsc slow-Il ucIlua ting Raylcigh
scatterers when l'ra = I .E-8

0 111y of Do ti.• vs. SIPL tU Noise tItle

I ,-- __ __L

-• io +" I " I Io

_

I figure ZS

i ~~~1 ' '• s! et0.1

OKan"i I d

-SO .'+ o .loc I.C *1Z0(.t .3.. • *)

Figure 1.10b The figure l'rom Rd. I I Im1r 16-l)ulsC slow-Iluctualing Raylcigh
scatterers when llfa = 1.E-8

I 9



~Pbability, of Detection %

____9.9ZT.~T Z

951_

90-- _ _

70'fiim
-500 5 1 5 2 5 3E3ry0oNos 1b

ý-1' 0 .1 to 5. 20 25 3

Energ to. Ntot~ ise. (T "db

Figure I1.a The rpoue figurefrmRf l for 1)--pulse fast-fluctuating Rayleigh
scatterers when Pr =1.E-8

20(



Probability of Detection (%I
99.9

70, -+
99 - J

50 _-

0.01_--z Y ±±
°-5 0 5 t0 15 20 25 30

Energy to Noise [db)

Figure 1.12a The reproduced figure for 16-pulsc slow-lluctuating dominant plus
Rayleigh scatterers when Pfa = I.E-2

Promability of Doec:tion ýs. Signs, t• sonse Ratio

- '.- ,'II-- I

"is

s"o+¶ _ _ _ _ _ _ _ _ ___ _ __._ _,,,_ _,_ _ _ _ _ _ __, I

- 10

S* I I

momll l| lyllplus 280411% IICaIef

- .'. I ___S|lr___~ l ___,______

0.1 1 to ~I .2
06

.6.0 0. .6.0 .10.0 .•3.0 1.00 a .1.0 310.0

.l1Ipl to ftle bitt. T. In1 41

Figure 1.12b The figure Imrom Ref. ll] for I6--pulse slow-fluctuating dominant plus
Rayleigh scatterers when P-,, = i.E-2

21



99Probabilt of Detection N ____

30 0-70 1 2 5 3

Energy to Noise IdbI
Figure 1.13a The reproduced figure for 16-pulse slow-I'luctuating dominant plus

Rayleigh scatterers when Pr,, I E-83

"Ibamltity of Ueswitte vs. Spiva Uost.Ltle

4-7 t ,.,

bm40tp.. att latr.

Figre .5 13khaiuefo Rf l o 6plse slowplus tating ominat plu
Rayeig se -trr whe pulsesE-

0.01121



Pmbability of Detection l_, _

0.1.

7-. . .. , . . . - - - .."- :. . . .. /-r--..... ..... .........i . . ..

ý-5 0 to 1 15 20 25 30
Energy to Noise IdbJ

Figure 1.14a The reproduced rigure for 16-pulse fast-fluctiatLing dominant Plus
Rayleigh scatterers when Pr, = LE-S

Procability of Detection .. . ... -. . .. .. . . . .. . .. ..c

98,

951

"35 0 5 tO i 0 5 3

Enegy o N igue 4l7

-t - 1 1

Figure 1.1 4b The rpoue figure rmRE[I for 16-pulse fast-11LctAuatLing dominant plus
Rayleigh scatterers when Pr,, = 1.E--8

S2 _ _ ,I MI
1(1i ' _ _ _ _ _"_ _ _ _ _'

'I __ -

_____, ! l / 1 0 I ___

o 1 __ __ _____.' -,

- t -i I * 10 loiI I
CAi ,- iQ/= ,,

_________,L,. . I F-lr•4
,.,.; .4 ..0.0 .1. ,.0.,,-- . . -0.

0,0

Figure 1.14b The figure lrom] Ref. [fi jfor 16--pulse Fast-fllt2tuating dominant plus
Rayleigh scatterers when Pra = l.E-8

23



999Probability of Detection ,

70

M-r 0 5 to 15 20 25 30
Energy to Noise WIdb

Figure 1. 15 The reproduced figure I*6r singl;-Ipulsc Ralyleigh scatterers
when Pr,, = I.E-29v- -t - L

Si::taiiyo *etection 4 -1_.

oA 7 -------

704

0-5 0 5 t0 15 20 25 30
Energy to Noise IdbI

Figurc 1. 15 The reproduced figure for single-pulse Rayleigh scatterers
when Pf,,= 1.E-2

30.--.-. ....

'v-5 0 5 10 15 20 25 30
Energy to Noise IdbJ

Figure 1 .16 The repr(oduccd figure for singlc-pulse Rayleigh scatterers

when P[a = 1 .E-5

24



bability of Detection N

~~~~~~............... 4....... ... ,..

4Z-~--J -A-.

0.1-

4-5 0 5 10 t5 20 25 30
Energy to Noise (dbi

Figure 1.17 The reproduced figure 1kw siilgle-jpulse Rayleigh scattcrers
when Pf,, = I E-8

9 Probability of DetectionN
9 9 .9 - I

0.--- .---

+ ..... - . ...... • - .S -:-L /x• • ...... - .. .. c

3 0 - .. .. -

- 57

ý5 0 5 10 15 20 25 30
Energy to Noise (dbi

Figure 1. 18 The reproducedI figure- for single-pulse domlinant plus R-ayleigh
scatterers when Pj-a = I .E-2

25



99.9 
_ _7

70~

0. 1 7 j

ý- o 15 20 25 30
Energy to Noise idbI

Figure 1.19 The reproduced figure for sinlgle-pukeI dorminant plus Rayleigh
scatterers, when Pf, I .E-5

M .P rbability of D etection .1%) .......

50 V

0.11 --- A- -

-5 0 5 to 15 20 25 30
Energy to Noise k1b)

Figure 1.20 The reproduced figure for single-jpulsc dominant plus Raylcigh
scatterers when Prf,, = l.E-S

2,6



99_q9P1'taiity of Detection(% V

rr

-. :.-- - -

50.01 . .......

:-5 0 5 t0 15 20 25 30
Energy to Noise (dbl

Figure 1.21 The reproduced figure f~or 4-pulsc SlOW-IlUcluaing Rayleigh
scatterers when Pra = 1.WE2

Probability of Detection_%

50-4

ý-5 0 5 1.0 1.5 20 25 30
Energy to Noise 1db)

Figure 1.22 The reproduced figure lk'r 4-pulse slow-liuctuating Rayleigh
sca tterers when Pf, = 1. E-5

27



9mProbabllty of Detction T T Z

70 .. : 7 --.

300

±-2

ý-5 0 5 to 7520 25 3
Energy to NikIse kibi

Figure 1.24 The reproduced figure fo~r 16-pulse slow-lluctuat~ing Rayleigh
scatterers when Pr = 1.E-18

9928



obabty o eeto
9M~

70 
-=.

1030203

0Aryt Niekb
Fiue1.2 h erdcd[gr o 6pleso-litaigRyeg

scatlrerswhen~r -I FA

0.0rbbiiyo e~to %
45~ 0~ 5 0 5 2 5 3

Enm to-oie l .

Figure 1.5 The r -rdUd iueIM1pus lwlctangRyih

r-71
Oh ----

:-5 0 5 10 15 20 25 30
Enemgy to Noise kibi

Figure 1.26 The rcproduccd [igurc fo~r 4-pulsc I'asL-f'lucfualing Rayleigh
sc~at tcrers whcn Pr = 1.E-2

29



•�ProbablMity of Detection

,- --- -" " " .. . - " " - . . .--. . .. . - e . i . . . . .• . . . .

0' , i

:-5 0 5 to 15 20 25 -3

70 ... .....lit of .... ..et .. . .. . .'"ctio-n . .. " .. ... .. ..

or~
70.. -:

:5 0 5 10 15 20 25 30
Energy toNoise Idbj

Figure 1.27 Thc reproduced figure for 4-pukse tI'st-flucItualing Rayleigh
sca tterers when Pr,. = 1. E-S

... -3..

Ntll •~----:-" .. ...--,-". .. . .i . .. .t . .. .. .. -.... .. . .

""-5 0 5 10 15 20 25 30
Energy to Noise kIbi

Figure 1.28 The reproducedl fgure for 4-1puisc fast-fluctuatling Rayleigh
scatterers when Pr• = 1 .E-5

9s.9Pmballit of elct3()



Probability of Detection 1%)

95

90.

seterr he iI.E-2, I

1 i4

50

0.1 i A 1

o-5 0 5 to 15 20 25 30
Energy to Noise (db)

Figure 1.29 The reproduced figure for 16-pulsc fast-fluctuating Raylcigh
scatterers when Pfa, = 1 .E-2

9999 ProbabilitIy of Detection %)-399.9 -- i: ' •

70I i. :
-50 I /• f-

3ofM 5-/ /iQ-f :
0A • ' i: i -!: ._•

"0.1 I " I'!/ : -i . .

Fiur -1 . .. The ,erdu c fi g r for --- p ls , •i-IL Utai n t a

scatterers when Pf,, = I.E-5

31



9999Probability of Detection (%J

_,,,_ _ _ .. .L . . _C., ..
9• p-.-"" -- • • "•" . ... , _,.• - ..... ," • -:--•-- L- . -. -

9oF- : ---- P, .. .>• .... -r -- .....-

0..

o-o 0 5 10 15 20 25 30
Energy to Noise Idb)

Figure 1.31 The reproduccd figure for 4-pulsc slow-Ilucituating dominant plus
Rayleigh scatterers when Pra = 1.E-2
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Figure 1.32 The reproduced figure for 4-pulse slow-rluctuating dominant plus
Rayleigh scatterers when Pr, = I.E-5
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Figure 1.33 The reproduced figure for 4-pulse slow-I1LIctIuating dominant plus
Rayleigh scatterers when Pr, = .E-8
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Figure 1.34 The reproduced figure for 1(6--pulsc slow-Iluctuating dominant plus
Rayleigh scatterers when Pr• = .E-5
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Figure 1.35 The reproduced figure for 4-pulse 'ast-fluctuating dominant plus
Rayleigh scatterers when Pr = [. E-2
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Figure 1.36 The reproduced figure for 4-pulse l'ast-ltUctuating dominant plus
Rayleigh scatterers when Pra = I.E-5
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Figure 1.37 The reproduced figure for 4-pulse 171st-fluctutating dominant plus
Rayleigh scatterers when Pr, = l.E-8
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Figure 1.38 The reproduced figure for 10-pulSe kis'It-IlIUCtualing dominant plus
Rayleigh scalicrers when Pf, = 1 .E-2
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Part II

THE EFFECTS OF NON-UNIFORMLY I)ISTRIBUTEI) ENERGY

ON RADAR DETECTION PERFORMANCE
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INTROi)UCTION

Radar detection performance has been studied for several decades, e.g. II]. In the

existing works, it is generally assumcd Iha Ithe energy is uniformily distributcd over the cells.

In I II, the probability of detection was plotted vs. signal-to-noise ratio for different number

of cells and different target models under the assumption of uniformly-distribuled energy.

The larget models studied in I II includes:

I) Single pulse, constant amplitude scallercrs,

2) Single pulse, Rayleigh scatterers,

3) Single pulse, dominant plus Rayleigh scallerers,

4) Multi-pulses, constant amplitude scattercrs,

5) Multi-pulses, slow fluctuating targets, Rayleigh scatterers,

6) Multi-pulses, fast fluctuating targets, Rayleigh scaltercrs,

7) Multi-pulses, slow fluctuating targets, dominant plus Rayleigh scattercr:.,

8) Multi-pulses, fast fluctuating targets, dominant plus Rayleigh scatterers.

However, in practical applications, the cells may have different energy; i.e., the energy

is not uniformly distributed over the cells. In these cases, the actual probability of detection

will differ from that with uniformly distributed energy and most of the formula involved in

computing the probability must be modified.

A difficulty in studying the effects of energy distribution is caused by too many possible

distribution manors of the energy. To overcome this difficulty, we have to develop a simple

energy distribution model which can well represent the practical cases.

In this part of the report, we will make all the necessary modifications to the formula

involved, develop a simple and realistic model of energy distributionwhich is described by only

two parameters. Then we will compulc Ihe probability of detection for different target models,

and discuss ihe change of detection probability caused by the energy (list ribul ion. Finally, the

change will be interpreted by the results corresponding to uniformly distributed energy.
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FORMULATION

To develop the energy distribution model, we assume that tile total number of resolution

clls, M, is given and (he energy of thc cells is fallen into a preset number of energy levels. The

energy of fhe second level is twice the energy of the Ist level, the energy of thie 3rd level is three

times the energy of the Ist level, and so on.

Generally, the energy of more cells is in the middle levels, and energy of only a few cells

is in tile upper levels and lower levels. Therefore, we assume thai the number of the cells with

specific energy is normally distributed over energy levels. The number of cells at energy level

E, is given by

= S exp F (0 = 1, 2,..., N) (2.1)

where N, is the total number of energy levels. Since M/ is generally not an integer at an energy

level, it has to be rounded. In Eq. (2.1), E and oT arc free parameters to control the shape of

the distribution, and S is so selected thai the total number of cells equals to the given number,

M. Figure 2.0 shows an example with eight energy levels.

Note the difference between energy distribution over cells and the distribulion of the

number of cells over the energy levels. When (T is small, ilhe number of cells is distributed

ncarby E; i.e., (he number of cells is unevenly distribuled over the energy levels. In this case,

all (lie cells have almost the same energy, ff; i.e., fhe energy is almost uniformly distributed

over the cells.

When the energy is not uniformly distributcd over the cells, most of the formula given

in Ref. [I] must be modified. The probability of detection is given by

N,

Pd =I- 11 (1-P 1  ) (2.2)i=!

where Mi is tlhe number of cells at thie ith energy level. Corresponding to different target
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models, the formula to compute Pdmi are given by

(1) Single Pulse, Constant Amplitude Scatrcrcrs

P dill. T 1 ,V;;7 1
- T ,y 0,No (2.3)

where Tyti, .j, kj is the incomplete Toronto funclion; No is the total noise energy; E. is

the total energy at ibh level; Y1, is ihc threshold. The formula to compute E. and Y., will be

given later.

(2) Single Pulse, Rayleigh Scattercrs

Y

P dil = exp I- / (2.4)

(3) Single Pulse, Dominant plus Rayleigh Scatterers

Pdi-= - IN 1  I + ( MiNO + + 1)
' I + 4MiN0/•. E I + P-/4 MiN0

I+I 4M 1 Nb (2.5)• xp I + Ei4 M iN0

(4) Mulli-Pulscs, Constant Amplitudc Scattcrers

1-T I 2N-1, N-1, VN•i/M / N0 ] (2.6)

where N is the number of the pulses.
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(5) Multi-Pulses, Slow Fluctuating targels, Rayleigh Scatlerers

Pdm.= 1- I( YN - N-2) + (I + NN -)

S'- NE/, 2MiN0

exp �IY b Y bN ) (2.7)1 +NF_ 2M iNo (I +2MiNdNF -

where I(x, j) is the incomplete gamma function.

(6) Multi-Pulses, Fast Fluctuating targets, Rayleigh Scatterers

Pdmn.= 1-1 -Yb -(281 ,,'N (I + Ej/2Mj Nd 'N- .)

(7) Multi-Pulses, Slow Fluctuating targets, Dominant plus Rayleigh Scatterers

00
Pdm = f P(Y) dY (2.9a)

where N-2

P(Y) - ( N MN0) K. cxp N Y
(I + NE /4MiNod 2 ý( + NE i/4MiNod

______ N-1
+ E t iN -Y(N-2) N /4MN 02 K cxpI((+N I4 )

( + I~ + Ni/MiN.d

N-I

+ y cxp(-Y)
(N-2)! (I + NE i/4MiNo

and

Y
K = I( (I 4MiNdNi)' N-2 (2.9c)
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(8) Multi-Pulses, Fast Fluctuating targets, Dominant plus Rayleigh Scatlercrs.

N - k
tN! IN Ei

(I + Ei/4MN) N k) =(

•M N+k-) (2.10)

The threshold, Yb, is related to false alarm probability, Pf,, by

Sr=1 
- (I-exp (-Y)) M for single pulse cases (2.1 la)

and

= - , N-1 for mulli-pulse cases (2.1 lb)

"The total signal energy in a given energy level, Ej, is related to the Iola) signal energy, E, by

Nt NI
- NI - NI.E = y E = I i MiE1 , (2.12)

where Mi is the number of cells in the ith energy level, El, is the base energy. Then

- NI
E= i M1 E1 , = i MEM (2.13)

j=l

RlEISUIJIS

Corresponding to different target models, different number of cells, different pulse

numbers, and different energy levels, we have plotted a number of figures which show lhe

probability of detection vs. the ratio of total energy to noise. We plotted eight sets of figures

corresponding to eight larget models. Four pulses arc assumed for mull i-pulse cases. Each set

consists of seven figures, which are described as follows:
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(a) Figures 2.la-2.8a show the comparison of detection performance between uniformly

distributed energy and non-uniformly distributed energy when M = 2 and a false alarm

probability of 0.01. This false alarm probability corresponds to a Yb value of 5.296 for

single pulse cases and a Y1 value of 10.97 for multi-pulse cases. M is thie total number of

cells and Yb is the threshold. When energy is uniformly distributed over the cells, both cell

have the same energy; when energy is non-uniformly distributed over the cells, I he energy

of one of the cell is twice that of tile other cell.

(b) Figures 2.1b-2.8b show the same cases as those in (a) except a false alarm probability of

L.E-8. This false alarm probability corresponds to a Y1,value of 19.11 for single pulse cases

and a Yb value of 27.35 for mulli-pulse cases.

(c) Figures 2. lc-2.8c show the comparison of detection performance betwcen diffcrent values

of or in Eq. (2.1) when N I = 8, M = 10, E= 5, and a false alarm probability of 0.01. This

false alarm probability corresponds to a Y(, value of 6.903 for single pulse cases and a Yb

value of 13.05 for multi-pulse cases. E is the energy level with largest number of cells (see

Eq. (2.1)), NI is the number of energy levels, M is the total number of cells. The energy

is more uniformly distributed over the cells when (T is smaller.

(d) Figures 2. ld-2.8d show the same cases as those in (c) except a false alarm probability of

.E-8. This false alarm probability corresponds to a Y1, value of 20.72 for singlc pulse cases

and a Y1, value of 29.15 for mulli-pulse cases.

(e) Figures 2.1 e-2.8c show the comparison of detection performance between different values

of E when N, = 8, M = 10, (T= 0.5 and a false alarm probability of 0.01. This false alarm

probability corresponds to a Yh value of 6.903 for single pulse cases and a Yb, value of 13.05

for multi-pulse cases.

() Figures 2. 1 f-2.8f show the same cases as those in (e) except (T= 3.0.
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(g) Figures 2.1g-2.8g show the same cases as those in (e) except a= 2.0 and a false alarm

probability of L.E-8. This false alarm probability corresponds (o a Y1, value of 20.72 for

single pulse cases and a Y1, value of 29.15 for mulli-pulse cases.

In the figures, thie horizontal axis denotcs the ratio of total signal energy to total noise

energy (E/N0) in decibel. The vertical axis denotes the probability of detection in pcrcentage.

Yh is the threshold, M is the total number of cells, "Level" is the total number of energy levels,

"Mean" denotes E.

The following eight sets of figures describe different larget models:

Figures 2.1 a-2.1 g: single-pulse constant amplitude scatterers;

Figures 2.1 a-2.2g: single-pulse Rayleigh scalt erers;

Figures 2.3a-2.3g: single-pulse dominant plus Rayleigh scalterers;

Figures 2.4a-2.4g: four-pulses constant amplitude scatterers;

Figures 2.5a-2.5g: four-pulse slow-fluctuating-target Rayleigh scalterers;

Figures 2.6a-2.6g: four-pulse fast-fluctuating-target Rayleigh scatterers;

Figures 2.7a-2.7g: four-pulse slow-fluctuating-target dominant plus Rayleigh

scallerers; Figs. 2.7c and 2.7f are omitted to save computational efforts.

Figures 2.8a-2.8g: four-pulse fast-flucluating-target dominant plus Rayleigh

scatterers.

Figs. 2.9-2.12 show the energy distribution of the cells over energy levels for various (T

and E when the total number of cells is 10 and the total number of energy levels is 8. When

(T is small, the cells are distributed over a few energy levels nearby E, i.e., the cells have nearly

equal energy. This situation is similar as uniformly--distributed energy over the cells. When

( = 0. I, all the cells are in the energy level Ef; i.e., the energy is uniformly distributed over the

cells.
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Table 2.1 shows the distribution of the cells over energy levels for different values of CF

when total number of cells is 10 and total number of energy level is 8 and E9= 5.

Thble 2.1 Distribution of the 10 Cells over 8 Energy Levels for Different

Values of or when E = 5.

EnergyLee 1 2 3 4 5 6 7 8

0.1 0 0 0 0 10 0 0 0

0.5 0 0 0 1 8 1 0 0

1.0 0 0 1 2 4 2 1 0

2.0 0 1 1 2 2 2 1 1

3.0 1 1 I 1 3 1 1 1

DISCUSSION

The figures in this part of the report show the following common phenomenon for every

target models:

When Yh is small, the probability of defection is not significantly affected by energy

distribulion. When Yt, becomes larger, the effects of energy distribution become more

significant. For example, when Y=29.15 and Ihc total number of cells is 10, in the case of

4-pulse constant amplit ude scat terers the deccecion probability is about 20% when E/N0 = 15

(b and the energy is uniformly distributed over the cells (scc Fig. 2.4d, =0. I). Howcver, when

r= 3.0 (energy is not uniformly distributed over the cells), the detection probability becomes

about 55%.

In addition to this common phenomenon for every larget mode. We can also find that

the effects of energy distribution arc also highly affccled by target models. We found that
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multi-pulse constant amplitude scatterers are most seriously affected by energy distribution;

single pulse constant amplitude scatterers are the second; then it comes in the order of

multi-pulse, fast-fluctuating-target dominant plus Rayleigh scatterers, multi-pulse,

Fast- flucluating-target Rayleigh scatterers, multi-pulsc slow-fluctuating-target dominant

plus Rayleigh scalterers, multi-pulse slow-fluctuating-target Rayleigh scaticrers,

single--pulse dominant plus Rayleigh scatterers, and finally single-pulse Rayleigh scatterers.

For constant amplitude scatterers (single-pulse or multi-pulse), the effects of the energy

distribution are similar no mailer the probability of detection is low or high. However, for

other target models (Rayleigh scatterers and dominant plus Rayleigh scatterers), tile effects

of energy distribution is significant in some of the probability range and less significant in the

other ranges. Generally, non-uniformly distributed energy will increase the probability of

detection and the effects are more significant in low probability ranges. The reason is that the

threshold is hard to across in that range and the non-uniformly distributed energy increase the

chance to across the threshold significantly for the cells with higher energy.

Let's define the "cell probability of detection" as Pdmi when the energy is uniformly

distributed. Then the effects of the energy distribution can also be explained by Ihe shape of

the cell probability of detection. First, it is helpful to consider the problem with only two cells.

The probability of deteclion of the first cell is p 1, and the probabilityof detection of the second

cell is P2. When the energy is uniformly distributed, P I = P2 = P (cell probability of detection).

The total probability of detection is given by:

P = I-(I-pl)(l-p2) = 2p- p 2  (2.14)

Now, let's assume the energy is not uniformly distributed and the first cell has lower energy

and the second cell has higher energy. Then pg becomes (p-bpl), and P2 bccomes (p + bpA).

The total probability of detection becomes

P+8P = i-(I-p)Cl-p 2) P +(I-p)(8p 2 _-p,) (2.15)

Iherefore
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8P (-p() (2.16)

We can see the trends of 8P from the plot of the p vs. signal-to-noi, :' io in linear scales.

When the curve is concave-up, 8P2 > bPi, and the non--uniformly distribulcd cncrgy will

increase the probability of dctection. When the curve is concave-down, BPI > 8P 2 , and ihe

non-uniformly distributed energy will decrease the probability of detection. The incremcnt

or dccrcment will clearly depend on how large is the curvaturc of the curve of p, howl hc cncrgy

is distributed and how large p is.

As an example, Figure 2.13 plots the cell probability of detection with different values

of Yb (6.903, 20.72) for single-pulse Rayleigh scat erers when M = 10. The figure shows Ihat

below 23 db of signal-to-noise ratio the curve is relatively straight when Yh = 6.903; therefore,

the probability of detection is not much affected by the energy distribution (see Fig. 2.2c). For

Yb = 20.72, Figure 2.13 shows that thc curvaturc of the curve is relatively large in certain ranges

of signal-to-noise ratio. The curve changes from concave-up to concave-down at about 24

db. Therefore, the probabilily of detection is more significantly affected by energy distribution

in low probability range and is not much affected by energy distribution nearby 24 db. And

when the signal-to-noise ratio is below 24 db, non-uniformly distributed energy increases

probability of detection and when the ratio is above 24 db, non-uniformly distributcd energy

decrease. probability of detection (see Fig. 2.2d).

SUMMARY

In realistic radar detection, the cells have diffcrent energy. This fact makes modification

to the ordinary theory and formula necessary. In this report, we use a realistic model of energy

distribution to investigate the probability of dclection for various target models.

We have found a common phenomena for every larget model: the effect of energy
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distribution will become more significant whcn the threshold, Y1,, is incrcased. However, the

effect of energy distribut ion will also largely depend on the target models. Constant amplitude

scattcrers are most seriously affected by energy distribution, dominant plus Rayleigh

scatterers are the next, and Rayleigh scatterers are least affectcd by energy distributions.

Multi-pulse cases are more seriously affected by energy distribution than singlc-pulse cases.

And fast fluctuating targets are more seriously affccled by energy distribution than slow

fluctuating targets.

The effect of energy distribution can be interpreted by a plot of so-called "cell

probability of detection" vs. signal-lo-noisc ratio in linear scales. When the curve is

concave-up, the non-uniformly distributed energy will increase the probability of detection.

When the curve is concave-down, the non-uniformly distributed energy will dccreasc the

probability of detection. The increment and decrement will depend on the curvature of the

curve, the energy distribution and the cell probability of detection at the given energy--to-

noise ratio. In most cases, non-uniformly distributed energy will increase the probability of

detection.
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Figure 2.2g Comparison between Different Values of E for Single-Pulse Rayleigh Scatterers
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Figure 2.3a Comparison between Uniformly Distributed Energy and Non-Uniformly
Distributed Energy for Single-Pulse Dominant plus Rayleigh Scatterers
when M = 2 and Pf. = 1.E-2
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Figure 2.3d Comparison between Different Values of ai for Single-Pulse Dominant plus
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Figure 2.4a Comparison between Uniformly Distributed Energy and Non-Uniformly
Distributed Energy for 4-Pulse Constant Amplitude Scaltcrers when M =2
and Pf8 = 1.E-2
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Figure 2.4b Comparison between Uniformly Distributed Energy and Non-Uniformly
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Figure 2.4g Comparison between Different Valucs of E for 4-Pulse Constant Amplil lude
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Figure 2.5a Comparison between Uniformly Distributed Energy and Non-Uniformly
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Figure 2.5g Comparison between Different Values of E for 4-Pulse Slow-Fluctuating
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Figure 2.6a Comparison between Uniformly Distributed Energy and Non-Uniformly
Distributed Energy for 4-Pulse Fast-Flucluating Rayleigh Scatterers when M =2
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